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Abstract

Top-down cracking (TDC) is a distress affecting asphalt pavements and consists of longitudi-
nal cracks that initiate on the pavement surface and propagate downwards. Such a distress 
is critical especially for thick asphalt pavements with open-graded friction courses (OGFC), 
which are common on motorways and high-speed roads. Nevertheless, many road agencies 
are not fully aware of the TDC issue yet and thus do not have adequate tools to detect TDC. 
Within this framework, as part of a larger project, this study proposes an automatic method 
for the recognition of TDC on the pavement. The tool developed is based on machine learn-
ing (ML) algorithms and allows to identify TDC from the analysis of pavement images. The 
main output provided by this tool is the information on the presence/absence of TDC on the 
pavement, with the related confidence level. The labeling and training of the algorithm were 
carried out on images of a significant portion of the Italian motorway network (400 km) that 
were subjected to a non-automatic visual analysis in a previous phase of the project. The 
algorithm was then validated considering a further 100 km trial section belonging to the 
Italian motorway network, from which several control cores were taken. The tool developed 
has the potential to be used in a pavement management system (PMS) to plan timely surface 
repairs/maintenance against TDC, especially when combined with a model able to predict 
TDC depth evolution over time. 
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1 Introduction

Top-down cracking (TDC) is a distress that affects asphalt pavements, consisting of longitudi-
nal cracks that initiate on the pavement surface and propagate downwards. TDC is basically 
caused by the repeated tire-pavement contact stresses, which determine the onset of tensile 
and shear stresses in the wheelpath area, which means that such distress is ascribable to 
fatigue failure (similarly to bottom-up cracking) [1-3]. 
Specifically, TDC is critical especially for thick asphalt pavements with open-graded friction 
courses (OGFC). These pavements are common on motorways and high-speed roads, where 
the pavement thickness ensures long-lasting bearing capacity in the presence of heavy traf-
fic and the interconnected air voids of the OGFC allow the water drainage from the pavement 
surface. In these cases, because of the pavement stiffness and the reduced mechanical 
properties of the wearing course, TDC generally precedes bottom-up cracking [1, 4]. 
In the initial stage, top-down cracks are isolated and can reach a length of several hundred 
meters. As the distress evolves, parallel longitudinal cracks are formed (“sister cracks”), fol-
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lowed by short transverse cracks, ultimately leading to an alligator cracking pattern in the 
wheelpath. At the same time, the distress evolves in depth affecting increasing portions of 
the asphalt layer thickness and, in the advanced stages, can even lead to a generalized fail-
ure in the upper part of the asphalt layers, causing rainwater seepage and thus compromis-
ing the structural properties of the pavement [1].
These detrimental consequences can be avoided through a timely identification of TDC and 
immediate surface repairs. In fact, in this way, the pavement integrity can be preserved by 
simply replacing few centimetres of asphalt concrete, hence minimizing also the mainte-
nance costs [1].
In recent years, machine learning (ML) methods have been often proposed for the automatic 
detection of pavement distresses [5-8]. Nevertheless, so far no scientific study has focused 
expressly on the identification of TDC with ML algorithms. In addition, the TDC issue is still 
little known to road agencies and practitioners, even though a survey of the Italian motorway 
network carried out in a previous phase of this project highlighted that, in some cases, TDC 
can affect up to 30 % of the slow lane length [4]. 
Within this framework, this paper describes a first attempt to develop an automatic method 
for the recognition of TDC on the pavement, based on ML algorithms. If implemented in a 
pavement management system (PMS), this tool can allow to plan timely surface repairs/
maintenance against TDC.

2 Development of the ML algorithm

2.1 Collection and pre-processing of the images

To develop the ML algorithm, the Automatic Road Analyzer (ARAN) images were used, which is 
an equipment mainly employed for roughness survey every six months on the entire Italian mo-
torway network and, among other data, takes photographs of the pavement on the slow lane 
every 5 m with a georeferenced camera. Since the network is about 6000 km long (considering 
both directions), about 106 pavement images are available for every semester starting from the 
year 2008, when the equipment was first used. Therefore, the ARAN images, whose resolution is 
1920x1080 pixels, potentially represent a large database for the development of the algorithm. 
Nevertheless, not all images show longitudinal cracks and only a small part of these cracks 
is certainly attributable to TDC, whose unequivocal identification always requires to be sup-
ported by the analysis of field cores. Consequently, the algorithm was trained based on a 
limited number of images of pavements affected by TDC, which belonged to a portion of the 
Italian motorway network of 400 km surveyed in a previous phase of the project [4, 9]. Some 
images of recently paved areas were also considered to train the algorithm to the case of 
intact (non-cracked) pavement. 
In addition, the ARAN images are characterized by a typical driver view (i.e. perspective, 
see Figure 1a), as the camera is mounted on the vehicle. Therefore, a pre-processing was 
necessary to straighten the images as well as to analyse the pavement continuously (the 
photographs are taken with a certain step).
Before any other pre-processing operation, the images (1800 in total) were anonymized for 
privacy reasons, covering the vehicle license plates with a dedicated open source software. 
Then, the images presenting longitudinal cracks (900) were labeled to train the algorithm. 
The label “TDC” was used in the presence of TDC, whereas the label “NO TDC” was used in 
the case of other longitudinal cracks that can be mistaken for TDC, such as longitudinal con-
struction joints and cracks due to tire blowout of heavy vehicles [4]. Specifically, each crack 
was identified by its initial and final points. The rest of the images (900) referred to the case 
of intact pavement. Of these images, about 1400 were used for the algorithm training and 
validation, whereas about 400 were used for the algorithm test. 
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Figure 1 Pre-processing of the images: a) the original ARAN image with the area of interest; b) orthogonal 
projection of the area of interest; c) final image (dimensions in pixels)

After the labeling, the images were manipulated to obtain an orthogonal projection of the 
pavement surface. Part of the image was cut out and then the image was deformed on the 
basis of the horizontal markings (right margin and line of separation between the first and 
second lanes), as shown in Figure 1b. The manipulation was also applied to the labels, which 
were then transormed from pairs of points to rectangles. The new “horizon line” (the upper 
side of the trapezoid in Figure 1a), was placed at the farthest point where the image sharp-
ness was deemed still acceptable. Even though the farthest area of the pavement was cut 
out, it was still possible to analyse the pavement continuously thanks to the availability of 
one photograph every 5 m, which ensured a certain overlapping between successive images. 
An example of a final image after the pre-processing procedure is shown in Figure 1c.

2.2 Image analysis criteria

The pre-processed images are analysed with the ML algorithm, which identifies the top-down 
cracks, assigning to each one a prediction confidence level between 0 and 1: the higher this 
value, the more confident the algorithm is of having identified a true top-down crack. There-
fore, there can be several top-down cracks in a single image, some more likely than others 
according to the algorithm. As an example, Figure 2a shows two top-down cracks, one along 
the right wheelpath and one along the left wheelpath of the slow lane, with different predic-
tion confidence levels. 

Figure 2 Image analysis: a) example of two potential top-down cracks with different prediction confidence 
levels; b) image sequences (scheme)
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To improve the general performance of the algorithm, some image analysis criteria were de-
fined. The first criterion involved the removal of redundant predicted labels within the single 
images. In fact, it was observed that in some cases the algorithm divided the same crack 
in multiple cracks with different confidence levels. If the horizontal distance between the 
cracks was less than a threshold value, the cracks were merged and a combined confidence 
level was considered. Such threshold (which is one of the free parameters of the ML algo-
rithm) was chosen equal to 40 pixels in this study.
The other criteria were based on the peculiar geometric characteristics of TDC. As already 
mentioned in Section 1, TDC affects the wheelpath area, which is located at a certain dis-
tance from the horizontal markings delimiting the lane. Therefore, to eliminate false top-
down cracks such as longitudinal construction joints [4], all the cracks falling within a certain 
distance from the markings were discarded. Such distance (which is another free parameter 
of the algorithm) was fixed equal to 40 pixels in this study. 
Moreover, as anticipated in Section 1, top-down cracks have typical lengths of several hun-
dred meters. Therefore, it was assumed that a true TDC would be continuous on several con-
secutive images. Consequently, sequences of images were considered, as schematized in 
Figure 2b. Each sequence included n images, and an overlap of k images was ensured be-
tween consecutive sequences. n and k are other two free parameters of the algorithm and 
were set respectively equal to 10 and 4 in this study. Analogously to what was done within 
the single image, the cracks present in different images of the sequence were merged if clos-
er than 40 pixels horizontally. It is worth noting that, to associate the presence of TDC to 
the sequence, the presence of one single top-down crack is sufficient. This criterion allows 
to include the cases in which a very long top-down crack has been partially hidden by local 
surface repairs. In these cases, TDC is not evident on the pavement surface in a continuous 
way but could still be present below shallow surface repairs.

3 Results

3.1 Performance of the algorithm

Table 1 reports the performance of the algorithm for 20 independent motorway stretches. The 
algorithm performance was assessed through different metrics. Specifically, for the labeled 
images referring to the case of cracked pavement, precision and recall were considered:

 Precison = TP/(TP + FP) (1)

 Recall = TP/(TP + FN) (2)

where TP is the number of true positives, FP is the number of false positives and FN is the 
number of false negatives. Precision quantifies the percentage of correctly identified top-
down cracks over the total of identified top-down cracks, whereas recall is a measure of the 
correctly identified top-down cracks over the total of existing top-down cracks. In this work, 
maximization of recall was preferred over precision, as – in the context of the larger purpose 
of this project – it is better to warn for a crack that is not TDC rather than skip a crack that is 
actually TDC. For this reason, another metric was also introduced, which is equal to 1 either 
if TDC is present in the image sequence and the algorithm finds it or if TDC is absent and the 
algorithm does not predict any top-down crack, 0 in the other cases. This metric, defined as 
“Boolean_kpi”, is useful especially in the case of intact pavement, for which precision and 
recall are 0 (TP=0), and should be maximized as well. It is worth noting that Table 1 reports 
the average values obtained considering all image sequences within the single stretch. This 
is why some Boolean_kpi values are between 0 and 1.
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Table 1 shows that, for cracked pavements, the recall and Boolean_kpi are close to 1 (except 
for stretch 7), whereas the precision is lower. At the same time, the Boolean_kpi is high 
also in the case of intact pavement (except for stretch 11). These results indicate that the 
algorithm overestimates the presence of TDC, associating it also to longitudinal cracks of 
different nature. 
The algorithm performance can certainly be improved (some considerations are provided 
in Section 4), but can be considered acceptable at the stretch level. In order to validate the 
algorithm results at a narrower observation scale (e.g. at the sequence or image level), field 
cores were examined, as discussed in Section 3.2. 

Table 1  Performance of the algorithm for different motorway stretches

3.2 Validation of the algorithm through field cores

A preliminary validation of the algorithm was done by considering a further 100 km trial sec-
tion belonging to the Italian motorway network. All images obtained during the last ARAN 
survey (dated July 2021) were analysed with the ML algorithm and then a sample check of 
the algorithm output was carried out through a coring campaign. In this regard, 3 worksites 
were installed on the trial section to extract a total of 19 cores (14 on the longitudinal cracks 
and 5 control cores in the middle of the lane). It is worth noting that the coring operations re-
quired the carriageway narrowing (i.e. reduction of the number of lanes available for traffic). 
Therefore, to minimize traffic inconvenience, all coring operations were carried out at night. 
The outcomes of the coring campaign are summarised in Table 2. In the table, the confidence 
classes A, B, C and D indicate respectively confidence intervals of 00.2, 0.20.4, 0.40.6 and 
>0.6. The algorithm identified 4 different cracks: cores 1-5, cores 6-9, cores 10-11 and cores 12-
14. However, 8 distinct cracks emerged from the analysis of the cores: TDC for cores 1-4 (longer 
than 450 m), 5 separate cracks due to tire blowout (cores 5, 6, 8, 10-11 and 12-14) and 2 reflec-
tive cracks (cores 7 and 9). Tire blowout cracks were simple incisions on the pavement surface 
[4], whereas reflective cracks affected almost the entire asphalt layer thickness. In general, no 
strong correlation was observed between the crack type and the confidence class, meaning 
that the algorithm was not fully able to distinguish different types of longitudinal cracks. Nev-
ertheless, the lowest confidence (class A) was never associated to TDC, whereas it was asso-
ciated to other longitudinal cracks in 4 cases out of 10, which represents a promising result.

Cracked pavement Intact pavement

Stretch Precision Recall Boolean_kpi Stretch Boolean_kpi

1 1 1 1 10 1

2 0.46 0.97 1 11 0.25

3 1 0.98 1 12 1

4 0.50 1 1 13 1

5 0.94 1 1 14 1

6 0.71 1 1 15 1

7 0.38 0.13 0.75 16 1

8 1 1 1 17 0.72

9 1 1 1 18 1

19 1

20 1

Average 0.78 0.90 0.97 Average 0.91
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Finally, it should be noted that the crack depth was between 60 and 105 mm in the cores af-
fected by TDC (Figure 3). The mechanical model developed in a previous phase of the project 
[9] correctly predicted a maximum TDC depth of 109 mm for this pavement. 

Table 2  Outcomes of the coring campaign

Figure 3 Top-down crack observed during the coring campaign

Worksite km Confidence class Core Distress

1 231+438 C 1 TDC

231+581 B 2 TDC

231+800 B 3 TDC

231+910 B 4 TDC

232+014 A 5 Tire blowout crack

232+688 A 6 Tire blowout crack

233+012 D 7 Reflective crack

233+158 C 8 Tire blowout crack

233+370 B 9 Reflective crack

2 265+582 B 10 Tire blowout crack

265+781 A 11 Tire blowout crack

3 273+803 A 12 Tire blowout crack

274+042 B 13 Tire blowout crack

274+391 C 14 Tire blowout crack
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4 Conclusions

This paper described a first attempt to develop an automatic method for the recognition 
of TDC on asphalt pavements, based on ML algorithms. The results obtained highlighted 
that currently the algorithm is able to identify longitudinal cracks, without however fully dis-
tinguishing their type (TDC vs. others). The possible causes include the limited number of 
images of top-down cracks used to train the algorithm, the low quality of the ARAN images 
available (which do not allow to recognize the peculiar features of TDC as compared to other 
longitudinal cracks) and the choice of the algorithm free parameters. In addition, more imag-
es and a greater variety (e.g. in terms of meteorological and light conditions, position of TDC) 
would probably be necessary for the algorithm training. In order to improve the algorithm, 
future work will involve the variation of the algorithm free parameters as well as the use 
of more images and with better quality. As for the latter aspect, the use of more advanced 
equipment in the future is already planned, and the algorithm was developed so that it can 
be easily adapted to different image acquisition systems. 
Anyhow, this tool can be considered complementary to the mechanical model developed in 
a previous phase of the project to predict TDC depth. In fact, the prediction model provides 
a maximum TDC depth that can potentially occur in a given pavement, whereas the ML al-
gorithm currently gives information on the presence/absence of longitudinal cracks. In the 
short term, the synergy between these two tools can be useful to identify the pavements 
more likely affected by TDC and organize an extensive coring campaign, with the final aim of 
improving both the ML algorithm and the mechanical model. In the long term, such tools can 
be used in a PMS to counteract TDC distress. 
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